Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions
نویسندگان
چکیده
Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is therefore an important element of climate change research. Range-resolved infrared differential absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. This paper describes the DIAL measurement technique and reports the application of an infrared DIAL system to field measurements of methane emissions from active and closed landfill sites. This paper shows how the capability of the DIAL to measure the spatial distribution of methane plumes enables DIAL vertical scans to spatially separate and independently quantify emissions from different sources. It also allows DIAL horizontal scans carried out above the surface to identify emission hot-spots. An overview of the landfill emission surveys carried out over the last decade by the National Physical Laboratory (NPL) DIAL system is presented. These surveys were part of research projects and commercial works aimed to validate the method and to provide reliable information on the methane emissions measuring the total site and area-specific emissions from active areas, capped areas, and gas engine stacks. This work showed that methane emissions are significantly higher for active sites than closed sites due to the methane emitted directly to air from the uncapped active areas. On active sites, the operational tipping areas generally have higher emission levels than the capped areas, although there is considerably variation in the emission from different capped areas. The information obtained with DIAL measurements allow site operators to identify significant fugitive emission sources and validate emissions estimates, and they allow the regulators to revise and update the emission inventories. Operators’ remediation actions driven by DIAL measurements have also been shown to considerably decreased total site methane emission.
منابع مشابه
DIAL Measurements of Fugitive Emissions from Natural Gas Plants and the Comparison with Emission Factor Estimates
Natural gas processing is a major industry in Alberta, Canada, and a significant source of fugitive emissions of both methane and volatile organic hydrocarbon (VOCs). This project investigated fugitive emissions at natural gas processing plants in Alberta using two complementary optical measurement methods. At five gas plants, the fugitive emissions of methane and hydrocarbons ethane and larger...
متن کاملField Validation of Remote Sensing Methane Emission Measurements
Area sources are a key contributor to overall greenhouse gas emissions but present a particular challenge to emission measurement techniques due to the heterogeneous nature of the sources. A new Controlled Release Facility (CRF) has been developed that is able to recreate in the field both the distribution and rate of emissions seen in actual industrial applications. The results of a series of ...
متن کاملA robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases
We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be ...
متن کاملEstimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)
One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for ...
متن کاملHeterodyne Dial Measurements of Atmospheric Co2 : Numerical Simulation and Experimental Results
A Heterodyne Differential Absorption Lidar (HDIAL) for monitoring atmospheric CO2 concentration is presented. The design of the lidar system is discussed including the 2.06-μm pulsed laser transmitter, heterodyne detection and signal processing. Moreover a numerical simulation in the time domain for HDIAL enables to evaluate the lidar performance for such measurements. Finally preliminary exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017